close
標題:

數學問題一條(立體)急...

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

發問:

下圖顯示有一幢水平底ABC的大廈,其中AB=BC=CA=10m.P,Q,R分別埀直於A,B,C的上方使PA=30m,QB=20m和RC=10m. (a)證PQR為等腰三角形 (b)求tan角APR和tan角APQ (c)M和N分別為PR和PA上的一點使QM和NM與PR埀直 (i)求QM.MN,QN.答案以根式或準確值表示 (ii)由此證平面PQR和APRC是埀直對方 圖片參考:http://imgcld.yimg.com/8/n/HA00543461/o/701002050131113873397470.jpg 更新: c對上就係R 更新 2: 有無人可以幫下我!!

最佳解答:

a)PQ^2 = (PA-QB)^2 + AB^2 = (30-20)^2 + 10^2 = 200 QR^2 = (QB - RC)^2 + BC^2 = (20-10)^2 + 10^2 = 200 So PQ^2 = QR^2 PQ = QR = 10√2 PQR為等腰三角形 b)tan ㄥAPR = AC / (PA - RC) = 10 / (30 - 10) = 1/2 tan ㄥAPQ = AB / (PA - QB) = 10 / (30-20) = 1 (即 ㄥAPQ = 45°) c)i) PR^2 = (PA-RC)^2 + AC^2 = (30-10)^2 + 10^2 = 500 PR = 10√5 PM = PR/2 = 5√5 QM^2 = PQ^2 - PM^2 = 200 - 125 = 75 QM = √75 = 5√3 m MN/PM = tanㄥAPR MN/(5√5) = 1/2 MN = 5√5/2 m PN^2 = PM^2 + MN^2 = (5√5)^2 + (5√5/2)^2 = 125 + 125/4 = 625/4 由餘弦定理 : QN^2 = PN^2 + PQ^2 - 2(PN)(PQ)cosㄥAPQ QN^2 = 625/4 + 200 - 2(25/2)(10√2) cos 45° QN^2 = 1425/4 - 25(10√2)(√2/2) = 425/4 QN = √(425/4) = 5√17/2 m C)ii) QN^2 = 425/4 QM^2 = 75 MN^2 = (5√5/2)^2 = 125/4 425/4 = 75 + 125/4 QN^2 = QM^2 + MN^2 ㄥQMN是直角,即 平面PQR和APRC是埀直對方。

其他解答:
arrow
arrow
    創作者介紹
    創作者 lgzrelv 的頭像
    lgzrelv

    lgzrelv的部落格

    lgzrelv 發表在 痞客邦 留言(0) 人氣()